Legendre spectral element method for solving sine-Gordon equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

Homoclinic Intersections and Mel'nikov Method for Perturbed sine -Gordon Equation

We describe and characterize rigorously the homoclinic structure of the perturbed sine{ Gordon equation under periodic boundary conditions. The existence of invariant manifolds for a perturbed sine{Gordon equation is established. Mel'nikov method, together with geometric analysis are used to assess the persistence of the homoclinic orbits under bounded and time-periodic perturbations.

متن کامل

Spectral methods using Legendre wavelets for nonlinear Klein\Sine-Gordon equations

Klein/Sine-Gordon equations are very important in that they can accurately model many essential physical phenomena. In this paper, we propose a new spectral method using Legendre wavelets as basis for numerical solution of Klein\Sine-Gordon Equations. Due to the good properties of wavelets basis, the proposed method can obtain good spatial and spectral resolution. Moreover, the presented method...

متن کامل

Haar Wavelet Method for Solving the Klein-Gordon and the Sine-Gordon Equations

Abstract: Haar wavelet method for solving the Klein–Gordon and the sine-Gordon equations has been implemented. Application to partial differential equations is exemplified by solving the sine-Gordon equation. The efficiency of the method is demonstrated by five numerical examples. Computer simulation is carried out for problems the exact solution of which is known. This allows us to estimate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2019

ISSN: 1687-1847

DOI: 10.1186/s13662-019-2059-7